Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2,8-Dimethoxy-4,10-dimethyl-1,3,7,9tetranitro-6*H*,12*H*-5,11-methanodibenzo[*b*,*f*][1,5]diazocine

# M. Delower H. Bhuiyan,<sup>a</sup> Paul Jensen<sup>b</sup> and Andrew C. Try<sup>a</sup>\*

<sup>a</sup>Department of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia, and <sup>b</sup>Crystal Structure Analysis Facility, School of Chemistry, F11, University of Sydney, NSW 2006, Australia Correspondence e-mail: andrew.try@mq.edu.au

Received 19 September 2007; accepted 16 October 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.087; data-to-parameter ratio = 9.2.

In the molecule of the title compound,  $C_{19}H_{18}N_6O_{10}$ , the 2,8dimethoxy-4,10-dimethyl-1,3,7,9-tetranitro analogue of Tröger's base, the diazocine bridge imparts a twist such that the two aryl rings are offset with respect to one another. The hinge angle of the molecule, measured as the dihedral angle between the two benzene rings, is 103.64 (5)°.

#### **Related literature**

For related literature on mononitro-substituted Tröger's base analogues, see: Webb & Wilcox (1990); Pardo *et al.* (1996). For dinitro-substituted Tröger's base analogues, see: Mederski *et al.* (2003); Li *et al.* (2005); Bhuiyan *et al.* (2007).

For related literature, see: Faroughi *et al.* (2006); Jensen & Wärnmark (2001); Kostyanovsky *et al.* (2003); Lenev *et al.* (2006); Mederski *et al.* (2003); Sergeyev *et al.* (2005); Solano *et al.* (2005); Sucholeiki *et al.* (1988).



#### **Experimental**

Crystal data

 $\begin{array}{l} C_{19}H_{18}N_6O_{10}\\ M_r = 490.39\\ \text{Orthorhombic, } P2_12_12_1\\ a = 8.629 \ (2) \text{ Å}\\ b = 9.155 \ (2) \text{ Å}\\ c = 26.484 \ (5) \text{ Å} \end{array}$ 

 $V = 2092.2 (8) \text{ Å}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 0.13 \text{ mm}^{-1}$  T = 150 (2) K $0.50 \times 0.47 \times 0.20 \text{ mm}$ 

#### Data collection

Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.913, T<sub>max</sub> = 0.975

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$  $wR(F^2) = 0.087$ S = 1.042951 reflections 20912 measured reflections 2951 independent reflections 2796 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.024$ 

320 parameters H-atom parameters constrained 
$$\begin{split} &\Delta \rho_{max} = 0.33 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2003); software used to prepare material for publication: *modiCIFer* (Guzei, 2005).

The authors thank the Australian Research Council for a Discovery Project grant (No. DP0345180) to ACT, and Macquarie University for the award of a Macquarie University Research Development grant to ACT and the award of an iMURS grant to MDHB.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2074).

#### References

- Bhuiyan, M. D. H., Jensen, P. & Try, A. C. (2007). Acta Cryst. E63, 0908–0909. Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). *SHELXTL* (Version 6.14) and *SAINT* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Faroughi, M., Try, A. C. & Turner, P. (2006). Acta Cryst. E62, o3893-o3894.
- Guzei, I. A. (2005). ModiCIFer. Version Dec-16-2005. University of Wisconsin–Madison, Madison, Wisconsin, USA.
- Jensen, J. & Wärnmark, K. (2001). Synthesis, pp. 1873-1877.
- Kostyanovsky, R. G., Kostyanovsky, V. R., Kadorkina, G. K. & Lyssenko, K. A. (2003). *Mendeleev Commun.* pp. 111–113.
- Lenev, D. A., Lyssenko, K. A., Golovanov, D. G., Malyshev, O. R., Levkin, P. A. & Kostyanovsky, R. G. (2006). *Tetrahedron Lett.* 47, 319–321.
- Li, Z. H., Xu, X., Peng, Y., Jiang, Z., Ding, C. & Qian, X. (2005). *Synthesis*, pp. 1228–1230.
- Mederski, W. W. K. R., Baumgarth, M., Germann, M., Kux, D. & Weitzel, T. (2003). *Tetrahedron Lett.* 44, 2133–2136.
- Pardo, C., Ramos, M., Fruchier, A. & Elguero, J. (1996). *Magn. Reson. Chem.* 34, 708–710.
- Sergeyev, S., Schär, M., Seiler, P., Lukoyanova, O., Echegoyen, L. & Diederich, F. (2005). Chem. Eur. J. 11, 2284–2294.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510–3517.
- Sucholeiki, I., Lynch, V., Phan, L. & Wilcox, C. S. (1988). J. Org. Chem. 53, 98– 104.
- Webb, T. H. & Wilcox, C. S. (1990). J. Org. Chem. 55, 363-365.

Acta Cryst. (2007). E63, o4393 [doi:10.1107/S1600536807050945]

# 2,8-Dimethoxy-4,10-dimethyl-1,3,7,9-tetranitro-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine

## M. D. H. Bhuiyan, P. Jensen and A. C. Try

### Comment

For over 100 years since the first synthesis of Tröger's base it was believed that analogues bearing electron-withdrawing groups could not be prepared in good yields, if at all. This belief was dispelled with the first synthesis of dihalogenated analogues (Jensen & Wärnmark, 2001), tetrabromo (Faroughi *et al.*, 2006) and dinitro analogues (Mederski *et al.*, 2003; Li *et al.*, 2005; Bhuiyan *et al.*, 2007). Compound (I) is the first example of a tetranitro Tröger's base analogue and was prepared in racemic form by reacting 4-methoxy-2-methyl-3,5-dinitroaniline with diglycolic acid in polyphosphoric acid (PPA) as shown in Fig. 2. The molecular structure of (I) is shown in Fig. 1. It is interesting to note that in addition to (I), there are two other reports of simple dibenzo Tröger's base analogues with dihedral angles greater than 100° that bear substituents in the 2,4,8- and 10-positions (Sucholeiki *et al.*, 1988; Faroughi *et al.*, 2006), at the upper end of the the range of 82° (Solano *et al.*, 2005) to 108° (Faroughi *et al.*, 2006), that are the lower and upper limits, respectively, that have been measured for for over twenty simple dibenzo Tröger's base analogues. These results would tend to suggest that the placement of substituents in these positions may lead to an increase in the cavity size of the Tröger's base systems, at least in the crystalline state.

Although the compound was prepared in racemic form, the crystal chosen for analysis crystallized in enantiopure form, however the absolute configuration of the structure has not been established by X-ray methods. This appears to be the fourth example of conglomerate crystallization among Tröger's base systems (Kostyanovsky *et al.*, 2003; Sergeyev *et al.*, 2005; Lenev *et al.*, 2006).

We were interested in preparing a range of nitro-substituted Tröger's base compounds as precursors for supramolecular recognition elements.

### Experimental

Synthetic details will be reported elsewhere. Crystals of (I) were obtained by slow evaporation of a dichloromethane solution.

#### **Figures**



Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

## 2,8-Dimethoxy-4,10-dimethyl-1,3,7,9-tetranitro-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine

 $D_{\rm x} = 1.557 {\rm Mg m}^{-3}$ 

Melting point: 509 K Mo *K*α radiation

Cell parameters from 6736 reflections

 $\lambda = 0.71073 \text{ Å}$ 

 $\theta = 2.4 - 28.3^{\circ}$ 

 $\mu = 0.13 \text{ mm}^{-1}$ 

T = 150 (2) K

Plate, pale yellow

 $0.50 \times 0.47 \times 0.20 \text{ mm}$ 

### Crystal data

C<sub>19</sub>H<sub>18</sub>N<sub>6</sub>O<sub>10</sub>  $M_r = 490.39$ Orthorhombic,  $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.629 (2) Å b = 9.155 (2) Å c = 26.484 (5) Å V = 2092.2 (8) Å<sup>3</sup> Z = 4 $F_{000} = 1016$ 

#### Data collection

| Bruker CCD-1000 area-detector<br>diffractometer                | 2951 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2796 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.024$                  |
| T = 150(2)  K                                                  | $\theta_{\text{max}} = 28.4^{\circ}$   |
| ω scans                                                        | $\theta_{\min} = 1.5^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -11 \rightarrow 11$               |
| $T_{\min} = 0.913, T_{\max} = 0.975$                           | $k = -12 \rightarrow 11$               |
| 20912 measured reflections                                     | <i>l</i> = −35→35                      |

### Refinement

| Refinement on $F^2$                                            | H-atom parameters constrained                                                       |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | $w = 1/[\sigma^2(F_0^2) + (0.0569P)^2 + 0.4264P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| $R[F^2 > 2\sigma(F^2)] = 0.031$                                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| $wR(F^2) = 0.087$                                              | $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$                                 |
| <i>S</i> = 1.04                                                | $\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$                              |
| 2951 reflections                                               | Extinction correction: none                                                         |
| 320 parameters                                                 |                                                                                     |
| Primary atom site location: structure-invariant direct methods |                                                                                     |
| Secondary atom site location: difference Fourier map           |                                                                                     |
| Hydrogen site location: inferred from neighbouring             |                                                                                     |

sites

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x             | У             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|---------------|--------------|---------------------------|
| 01  | -0.24794 (17) | 0.33842 (19)  | 0.07709 (8)  | 0.0502 (5)                |
| O2  | -0.08837 (18) | 0.48777 (15)  | 0.04288 (6)  | 0.0389 (4)                |
| O3  | -0.16534 (14) | 0.11061 (15)  | 0.01060 (4)  | 0.0271 (3)                |
| O4  | 0.0242 (2)    | -0.11653 (17) | -0.02943 (5) | 0.0412 (4)                |
| O5  | 0.0452 (3)    | -0.23330 (16) | 0.04133 (7)  | 0.0519 (4)                |
| O6  | -0.03451 (19) | 0.5055 (2)    | 0.31937 (6)  | 0.0516 (5)                |
| 07  | 0.1945 (2)    | 0.5605 (2)    | 0.34557 (6)  | 0.0503 (4)                |
| 08  | 0.16799 (16)  | 0.21859 (15)  | 0.34025 (4)  | 0.0293 (3)                |
| 09  | 0.42213 (18)  | -0.03735 (17) | 0.25715 (6)  | 0.0405 (4)                |
| O10 | 0.1932 (2)    | -0.04848 (15) | 0.29035 (6)  | 0.0390 (3)                |
| N1  | -0.12096 (16) | 0.36974 (16)  | 0.06071 (5)  | 0.0229 (3)                |
| N2  | 0.04626 (19)  | -0.12154 (16) | 0.01626 (6)  | 0.0293 (3)                |
| N3  | 0.30705 (16)  | 0.42473 (15)  | 0.14649 (5)  | 0.0204 (3)                |
| N4  | 0.38756 (16)  | 0.18709 (16)  | 0.11780 (5)  | 0.0205 (3)                |
| N5  | 0.10563 (19)  | 0.49762 (18)  | 0.31727 (5)  | 0.0289 (3)                |
| N6  | 0.29756 (19)  | 0.01726 (17)  | 0.26895 (5)  | 0.0267 (3)                |
| C1  | -0.00005 (17) | 0.25689 (17)  | 0.06230 (6)  | 0.0192 (3)                |
| C2  | -0.03352 (19) | 0.12601 (18)  | 0.03837 (6)  | 0.0210 (3)                |
| C3  | -0.2842 (2)   | 0.0221 (3)    | 0.03419 (7)  | 0.0362 (4)                |
| H3A | -0.2384       | -0.0695       | 0.0462       | 0.054*                    |
| H3B | -0.3657       | 0.0005        | 0.0095       | 0.054*                    |
| H3C | -0.3288       | 0.0754        | 0.0628       | 0.054*                    |
| C4  | 0.0768 (2)    | 0.01678 (18)  | 0.04267 (6)  | 0.0217 (3)                |
| C5  | 0.21390 (19)  | 0.03065 (17)  | 0.06985 (6)  | 0.0202 (3)                |
| C6  | 0.3289 (2)    | -0.09185 (19) | 0.07389 (7)  | 0.0274 (3)                |
| H6A | 0.2939        | -0.1617       | 0.0995       | 0.041*                    |
| H6B | 0.4302        | -0.0525       | 0.0836       | 0.041*                    |
| H6C | 0.3376        | -0.1414       | 0.0412       | 0.041*                    |
| C7  | 0.24331 (18)  | 0.16794 (17)  | 0.09196 (5)  | 0.0180 (3)                |
| C8  | 0.13757 (18)  | 0.28300 (17)  | 0.08822 (5)  | 0.0181 (3)                |
| C9  | 0.17197 (19)  | 0.43057 (17)  | 0.11245 (6)  | 0.0205 (3)                |
| H9A | 0.1917        | 0.5034        | 0.0856       | 0.025*                    |
| H9B | 0.0800        | 0.4631        | 0.1318       | 0.025*                    |

| C10  | 0.42902 (19) | 0.34144 (19) | 0.12147 (6) | 0.0232 (3) |
|------|--------------|--------------|-------------|------------|
| H10A | 0.5268       | 0.3514       | 0.1407      | 0.028*     |
| H10B | 0.4463       | 0.3813       | 0.0872      | 0.028*     |
| C11  | 0.38882 (19) | 0.12370 (18) | 0.16884 (6) | 0.0217 (3) |
| H11A | 0.4975       | 0.1073       | 0.1794      | 0.026*     |
| H11B | 0.3361       | 0.0277       | 0.1680      | 0.026*     |
| C12  | 0.30895 (18) | 0.22120 (17) | 0.20748 (6) | 0.0199 (3) |
| C13  | 0.27142 (18) | 0.36599 (17) | 0.19513 (6) | 0.0189 (3) |
| C14  | 0.20377 (19) | 0.46122 (18) | 0.23053 (6) | 0.0204 (3) |
| C15  | 0.1778 (2)   | 0.61959 (19) | 0.21860 (6) | 0.0273 (3) |
| H15A | 0.0893       | 0.6292       | 0.1957      | 0.041*     |
| H15B | 0.2707       | 0.6599       | 0.2025      | 0.041*     |
| H15C | 0.1566       | 0.6732       | 0.2499      | 0.041*     |
| C16  | 0.17340 (19) | 0.40371 (19) | 0.27790 (6) | 0.0221 (3) |
| C17  | 0.20533 (19) | 0.26139 (18) | 0.29235 (6) | 0.0223 (3) |
| C18  | 0.2990 (3)   | 0.1949 (2)   | 0.37300 (6) | 0.0335 (4) |
| H18A | 0.3633       | 0.1159       | 0.3594      | 0.050*     |
| H18B | 0.2623       | 0.1679       | 0.4068      | 0.050*     |
| H18C | 0.3605       | 0.2847       | 0.3751      | 0.050*     |
| C19  | 0.27199 (19) | 0.17181 (18) | 0.25601 (6) | 0.0216 (3) |
|      |              |              |             |            |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-----------------|-------------|--------------|-------------|
| 01  | 0.0255 (7)  | 0.0472 (9)  | 0.0781 (12)     | 0.0093 (7)  | 0.0215 (7)   | 0.0217 (9)  |
| 02  | 0.0358 (7)  | 0.0257 (6)  | 0.0553 (9)      | 0.0065 (6)  | 0.0150 (7)   | 0.0123 (6)  |
| O3  | 0.0214 (5)  | 0.0388 (7)  | 0.0213 (5)      | -0.0075 (5) | -0.0039 (4)  | 0.0033 (5)  |
| O4  | 0.0496 (8)  | 0.0450 (8)  | 0.0290 (6)      | -0.0131 (8) | 0.0026 (6)   | -0.0152 (6) |
| O5  | 0.0773 (12) | 0.0237 (6)  | 0.0548 (9)      | -0.0119 (8) | -0.0092 (10) | -0.0007 (6) |
| O6  | 0.0351 (8)  | 0.0801 (13) | 0.0394 (8)      | 0.0226 (9)  | 0.0029 (7)   | -0.0153 (9) |
| 07  | 0.0524 (9)  | 0.0621 (10) | 0.0363 (7)      | -0.0002 (9) | -0.0028 (7)  | -0.0274 (7) |
| 08  | 0.0311 (7)  | 0.0394 (7)  | 0.0174 (5)      | 0.0006 (6)  | -0.0004 (5)  | 0.0032 (5)  |
| 09  | 0.0401 (8)  | 0.0389 (7)  | 0.0426 (8)      | 0.0175 (7)  | -0.0053 (6)  | 0.0050 (7)  |
| O10 | 0.0501 (9)  | 0.0298 (7)  | 0.0371 (7)      | -0.0035 (7) | 0.0030 (7)   | 0.0049 (6)  |
| N1  | 0.0191 (6)  | 0.0267 (7)  | 0.0229 (6)      | 0.0022 (6)  | 0.0006 (5)   | 0.0020 (5)  |
| N2  | 0.0309 (7)  | 0.0242 (7)  | 0.0329 (7)      | -0.0076 (6) | 0.0027 (6)   | -0.0084 (6) |
| N3  | 0.0205 (6)  | 0.0222 (6)  | 0.0187 (6)      | -0.0035 (5) | 0.0011 (5)   | -0.0020 (5) |
| N4  | 0.0160 (6)  | 0.0244 (6)  | 0.0211 (6)      | 0.0001 (5)  | -0.0001 (5)  | -0.0031 (5) |
| N5  | 0.0331 (8)  | 0.0341 (8)  | 0.0196 (6)      | 0.0090 (7)  | 0.0013 (6)   | -0.0031 (6) |
| N6  | 0.0333 (8)  | 0.0261 (7)  | 0.0209 (6)      | 0.0035 (6)  | -0.0078 (6)  | 0.0011 (5)  |
| C1  | 0.0176 (7)  | 0.0212 (7)  | 0.0187 (6)      | 0.0011 (6)  | 0.0023 (5)   | 0.0020 (5)  |
| C2  | 0.0201 (7)  | 0.0260 (7)  | 0.0167 (6)      | -0.0049 (6) | 0.0004 (6)   | 0.0008 (6)  |
| C3  | 0.0268 (9)  | 0.0514 (12) | 0.0302 (9)      | -0.0165 (9) | -0.0057 (7)  | 0.0059 (9)  |
| C4  | 0.0245 (8)  | 0.0199 (7)  | 0.0207 (7)      | -0.0043 (6) | 0.0026 (6)   | -0.0032 (6) |
| C5  | 0.0213 (7)  | 0.0200 (7)  | 0.0192 (6)      | 0.0005 (6)  | 0.0038 (6)   | -0.0011 (6) |
| C6  | 0.0284 (8)  | 0.0227 (7)  | 0.0310 (8)      | 0.0053 (7)  | 0.0030 (7)   | -0.0027 (6) |
| C7  | 0.0173 (7)  | 0.0206 (7)  | 0.0163 (6)      | -0.0006 (6) | 0.0025 (5)   | -0.0017 (5) |
| C8  | 0.0184 (7)  | 0.0202 (7)  | 0.0157 (6)      | -0.0026 (6) | 0.0036 (5)   | -0.0007 (5) |

| C9  | 0.0232 (7)  | 0.0193 (7)  | 0.0189 (6) | -0.0003 (6) | 0.0005 (6)  | -0.0004 (5) |
|-----|-------------|-------------|------------|-------------|-------------|-------------|
| C10 | 0.0182 (7)  | 0.0290 (8)  | 0.0226 (7) | -0.0057 (6) | 0.0027 (6)  | -0.0046 (6) |
| C11 | 0.0192 (7)  | 0.0251 (7)  | 0.0209 (7) | 0.0048 (6)  | -0.0011 (6) | -0.0027 (6) |
| C12 | 0.0170 (6)  | 0.0230 (7)  | 0.0198 (6) | 0.0008 (6)  | -0.0017 (6) | -0.0023 (6) |
| C13 | 0.0165 (6)  | 0.0217 (7)  | 0.0185 (6) | -0.0026 (6) | -0.0011 (5) | -0.0021 (5) |
| C14 | 0.0185 (7)  | 0.0222 (7)  | 0.0204 (7) | -0.0006 (6) | -0.0016 (6) | -0.0032 (6) |
| C15 | 0.0355 (9)  | 0.0218 (7)  | 0.0245 (7) | 0.0031 (7)  | 0.0004 (7)  | -0.0027 (6) |
| C16 | 0.0201 (7)  | 0.0282 (8)  | 0.0180 (7) | 0.0024 (6)  | -0.0014 (6) | -0.0053 (6) |
| C17 | 0.0212 (7)  | 0.0288 (8)  | 0.0168 (6) | 0.0001 (7)  | -0.0021 (6) | 0.0000 (6)  |
| C18 | 0.0414 (10) | 0.0366 (10) | 0.0227 (8) | 0.0015 (9)  | -0.0101 (7) | 0.0019 (7)  |
| C19 | 0.0207 (7)  | 0.0240 (7)  | 0.0201 (7) | 0.0011 (6)  | -0.0039 (6) | 0.0004 (6)  |
|     |             |             |            |             |             |             |

# Geometric parameters (Å, °)

| O1—N1      | 1.213 (2)   | C4—C5      | 1.391 (2)   |
|------------|-------------|------------|-------------|
| O2—N1      | 1.212 (2)   | С5—С7      | 1.410 (2)   |
| O3—C2      | 1.3618 (19) | C5—C6      | 1.501 (2)   |
| O3—C3      | 1.449 (2)   | С6—Н6А     | 0.9800      |
| O4—N2      | 1.226 (2)   | С6—Н6В     | 0.9800      |
| O5—N2      | 1.220 (2)   | С6—Н6С     | 0.9800      |
| O6—N5      | 1.213 (2)   | C7—C8      | 1.397 (2)   |
| O7—N5      | 1.217 (2)   | C8—C9      | 1.525 (2)   |
| O8—C17     | 1.366 (2)   | С9—Н9А     | 0.9900      |
| O8—C18     | 1.441 (2)   | С9—Н9В     | 0.9900      |
| O9—N6      | 1.226 (2)   | C10—H10A   | 0.9900      |
| O10—N6     | 1.223 (2)   | C10—H10B   | 0.9900      |
| N1—C1      | 1.469 (2)   | C11—C12    | 1.523 (2)   |
| N2—C4      | 1.470 (2)   | C11—H11A   | 0.9900      |
| N3—C13     | 1.4295 (19) | C11—H11B   | 0.9900      |
| N3—C10     | 1.459 (2)   | C12—C19    | 1.399 (2)   |
| N3—C9      | 1.475 (2)   | C12—C13    | 1.403 (2)   |
| N4—C7      | 1.431 (2)   | C13—C14    | 1.407 (2)   |
| N4—C10     | 1.461 (2)   | C14—C16    | 1.386 (2)   |
| N4—C11     | 1.471 (2)   | C14—C15    | 1.501 (2)   |
| N5—C16     | 1.472 (2)   | C15—H15A   | 0.9800      |
| N6—C19     | 1.473 (2)   | C15—H15B   | 0.9800      |
| C1—C2      | 1.386 (2)   | C15—H15C   | 0.9800      |
| C1—C8      | 1.392 (2)   | C16—C17    | 1.386 (2)   |
| C2—C4      | 1.385 (2)   | C17—C19    | 1.389 (2)   |
| С3—НЗА     | 0.9800      | C18—H18A   | 0.9800      |
| С3—Н3В     | 0.9800      | C18—H18B   | 0.9800      |
| С3—НЗС     | 0.9800      | C18—H18C   | 0.9800      |
| C2—O3—C3   | 114.59 (13) | С7—С8—С9   | 120.73 (14) |
| C17—O8—C18 | 114.64 (14) | N3—C9—C8   | 112.28 (13) |
| O2—N1—O1   | 124.03 (16) | N3—C9—H9A  | 109.1       |
| O2—N1—C1   | 118.24 (14) | С8—С9—Н9А  | 109.1       |
| O1—N1—C1   | 117.72 (14) | N3—C9—H9B  | 109.1       |
| O5—N2—O4   | 124.57 (16) | С8—С9—Н9В  | 109.1       |
| O5—N2—C4   | 117.72 (15) | H9A—C9—H9B | 107.9       |

| O4—N2—C4    | 117.71 (15)  | N3—C10—N4       | 111.05 (13) |
|-------------|--------------|-----------------|-------------|
| C13—N3—C10  | 111.58 (13)  | N3—C10—H10A     | 109.4       |
| C13—N3—C9   | 113.24 (12)  | N4—C10—H10A     | 109.4       |
| C10—N3—C9   | 108.16 (12)  | N3-C10-H10B     | 109.4       |
| C7—N4—C10   | 111.31 (13)  | N4              | 109.4       |
| C7—N4—C11   | 113.42 (13)  | H10A—C10—H10B   | 108.0       |
| C10—N4—C11  | 108.57 (13)  | N4—C11—C12      | 112.52 (13) |
| O6—N5—O7    | 124.88 (18)  | N4—C11—H11A     | 109.1       |
| O6—N5—C16   | 117.60 (17)  | C12—C11—H11A    | 109.1       |
| O7—N5—C16   | 117.52 (16)  | N4—C11—H11B     | 109.1       |
| O10—N6—O9   | 124.29 (16)  | С12—С11—Н11В    | 109.1       |
| O10—N6—C19  | 118.07 (16)  | H11A—C11—H11B   | 107.8       |
| O9—N6—C19   | 117.63 (16)  | C19—C12—C13     | 117.83 (15) |
| C2—C1—C8    | 123.48 (15)  | C19—C12—C11     | 122.07 (15) |
| C2—C1—N1    | 116.55 (14)  | C13—C12—C11     | 120.10 (14) |
| C8—C1—N1    | 119.94 (14)  | C12—C13—C14     | 121.72 (14) |
| O3—C2—C4    | 122.92 (15)  | C12—C13—N3      | 121.06 (14) |
| O3—C2—C1    | 120.70 (15)  | C14—C13—N3      | 117.17 (14) |
| C4—C2—C1    | 116.32 (15)  | C16—C14—C13     | 116.51 (15) |
| O3—C3—H3A   | 109.5        | C16—C14—C15     | 121.97 (15) |
| O3—C3—H3B   | 109.5        | C13—C14—C15     | 121.35 (15) |
| НЗА—СЗ—НЗВ  | 109.5        | C14—C15—H15A    | 109.5       |
| O3—C3—H3C   | 109.5        | C14—C15—H15B    | 109.5       |
| НЗА—СЗ—НЗС  | 109.5        | H15A—C15—H15B   | 109.5       |
| НЗВ—СЗ—НЗС  | 109.5        | C14—C15—H15C    | 109.5       |
| C2—C4—C5    | 124.14 (15)  | H15A—C15—H15C   | 109.5       |
| C2—C4—N2    | 117.37 (15)  | H15B—C15—H15C   | 109.5       |
| C5—C4—N2    | 118.49 (15)  | C14—C16—C17     | 124.73 (15) |
| C4—C5—C7    | 116.71 (14)  | C14—C16—N5      | 119.63 (15) |
| C4—C5—C6    | 122.07 (15)  | C17-C16-N5      | 115.62 (14) |
| C7—C5—C6    | 121.17 (15)  | O8—C17—C16      | 118.64 (15) |
| С5—С6—Н6А   | 109.5        | O8—C17—C19      | 124.86 (16) |
| С5—С6—Н6В   | 109.5        | C16—C17—C19     | 116.49 (15) |
| H6A—C6—H6B  | 109.5        | O8—C18—H18A     | 109.5       |
| С5—С6—Н6С   | 109.5        | O8-C18-H18B     | 109.5       |
| H6A—C6—H6C  | 109.5        | H18A-C18-H18B   | 109.5       |
| H6B—C6—H6C  | 109.5        | O8—C18—H18C     | 109.5       |
| C8—C7—C5    | 121.68 (14)  | H18A—C18—H18C   | 109.5       |
| C8—C7—N4    | 120.63 (14)  | H18B—C18—H18C   | 109.5       |
| C5—C7—N4    | 117.67 (14)  | C17—C19—C12     | 122.68 (15) |
| C1—C8—C7    | 117.55 (14)  | C17—C19—N6      | 117.90 (15) |
| C1—C8—C9    | 121.71 (14)  | C12-C19-N6      | 119.36 (15) |
| O2—N1—C1—C2 | -123.01 (17) | C7—N4—C10—N3    | 56.74 (17)  |
| O1—N1—C1—C2 | 56.5 (2)     | C11—N4—C10—N3   | -68.78 (16) |
| O2—N1—C1—C8 | 58.8 (2)     | C7—N4—C11—C12   | -79.62 (16) |
| O1—N1—C1—C8 | -121.7 (2)   | C10—N4—C11—C12  | 44.66 (17)  |
| C3—O3—C2—C4 | 76.4 (2)     | N4—C11—C12—C19  | 168.27 (14) |
| C3—O3—C2—C1 | -106.45 (19) | N4—C11—C12—C13  | -12.4 (2)   |
| C8—C1—C2—O3 | -175.31 (14) | C19—C12—C13—C14 | 2.2 (2)     |

| N1—C1—C2—O3   | 6.6 (2)      | C11—C12—C13—C14 | -177.18 (14) |
|---------------|--------------|-----------------|--------------|
| C8—C1—C2—C4   | 2.0 (2)      | C19-C12-C13-N3  | 179.33 (14)  |
| N1—C1—C2—C4   | -176.08 (13) | C11-C12-C13-N3  | 0.0 (2)      |
| O3—C2—C4—C5   | 178.54 (15)  | C10-N3-C13-C12  | -20.9 (2)    |
| C1—C2—C4—C5   | 1.3 (2)      | C9—N3—C13—C12   | 101.40 (17)  |
| O3—C2—C4—N2   | -0.9 (2)     | C10-N3-C13-C14  | 156.36 (14)  |
| C1—C2—C4—N2   | -178.10 (14) | C9—N3—C13—C14   | -81.33 (17)  |
| O5—N2—C4—C2   | -123.3 (2)   | C12-C13-C14-C16 | -1.2 (2)     |
| O4—N2—C4—C2   | 57.0 (2)     | N3-C13-C14-C16  | -178.47 (14) |
| O5—N2—C4—C5   | 57.3 (2)     | C12-C13-C14-C15 | 174.14 (15)  |
| O4—N2—C4—C5   | -122.48 (18) | N3-C13-C14-C15  | -3.1 (2)     |
| C2—C4—C5—C7   | -3.3 (2)     | C13-C14-C16-C17 | 0.2 (2)      |
| N2—C4—C5—C7   | 176.13 (14)  | C15-C14-C16-C17 | -175.08 (16) |
| C2—C4—C5—C6   | 179.20 (15)  | C13-C14-C16-N5  | 178.75 (15)  |
| N2-C4-C5-C6   | -1.4 (2)     | C15-C14-C16-N5  | 3.4 (3)      |
| C4—C5—C7—C8   | 2.1 (2)      | O6—N5—C16—C14   | 88.4 (2)     |
| C6—C5—C7—C8   | 179.65 (14)  | O7—N5—C16—C14   | -92.3 (2)    |
| C4—C5—C7—N4   | -176.71 (14) | O6—N5—C16—C17   | -93.0 (2)    |
| C6—C5—C7—N4   | 0.9 (2)      | O7—N5—C16—C17   | 86.4 (2)     |
| C10—N4—C7—C8  | -20.73 (19)  | C18—O8—C17—C16  | -109.32 (18) |
| C11—N4—C7—C8  | 102.05 (17)  | C18—O8—C17—C19  | 71.6 (2)     |
| C10—N4—C7—C5  | 158.08 (14)  | C14—C16—C17—O8  | -179.42 (15) |
| C11—N4—C7—C5  | -79.14 (16)  | N5-C16-C17-O8   | 2.0 (2)      |
| C2—C1—C8—C7   | -3.0 (2)     | C14—C16—C17—C19 | -0.3 (2)     |
| N1—C1—C8—C7   | 174.98 (13)  | N5-C16-C17-C19  | -178.84 (15) |
| C2-C1-C8-C9   | 177.82 (14)  | O8—C17—C19—C12  | -179.61 (15) |
| N1—C1—C8—C9   | -4.1 (2)     | C16-C17-C19-C12 | 1.3 (2)      |
| C5—C7—C8—C1   | 0.9 (2)      | O8—C17—C19—N6   | 3.2 (2)      |
| N4—C7—C8—C1   | 179.63 (13)  | C16-C17-C19-N6  | -175.87 (15) |
| C5—C7—C8—C9   | -179.99 (13) | C13-C12-C19-C17 | -2.3 (2)     |
| N4—C7—C8—C9   | -1.2 (2)     | C11—C12—C19—C17 | 177.10 (15)  |
| C13—N3—C9—C8  | -80.15 (16)  | C13-C12-C19-N6  | 174.90 (14)  |
| C10—N3—C9—C8  | 44.05 (17)   | C11-C12-C19-N6  | -5.7 (2)     |
| C1—C8—C9—N3   | 168.06 (13)  | O10-N6-C19-C17  | 44.5 (2)     |
| C7—C8—C9—N3   | -11.0 (2)    | O9—N6—C19—C17   | -136.02 (17) |
| C13—N3—C10—N4 | 55.74 (17)   | O10-N6-C19-C12  | -132.75 (17) |
| C9—N3—C10—N4  | -69.45 (17)  | O9—N6—C19—C12   | 46.7 (2)     |



Fig. 1



